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ABSTRACT

An experimental investigation was conducted to provide basic unsteady pres-
sure distributions on a stationary vane row, with the primary source of
excitation being the wakes generated from an upstream rotor. This was ac-
complished over a wide range of key parameters in a large-scale, low-speed,
single stage compressor. The excitation, the velocity defect created by
the rotor blade wakes, was measured with a crossed hot wire. The resulting
time-variant aerodynamic response was measured by means of flush mounted
high response pressure transducers mounted on a stator vane over a wide
range in incidence angles. The dynamic data were analyzed to determine

the chordwise distribution of the dimensionless dynamic pressure coeffic-~
ient and as.~dynamic phase lag as referenced to the transverse gust at the

vane ieading edge.

Parametric changes were accomplished by changing the number of rotor blades

and stator vanes. Data for reduced frequencies from 3.0 to 20 were obtained,

while solidity was varied between .758 and 1.516. The interblade phase an-
gles were determined as a function of the number of rotor blades and number
of stator vanes and varied as either was changed. The data obtained from
the experimental portion of this study were correlated with a compressible,
thin, uncambered airfoil cascade analysis. Comparisons were good for low
incidence flow at reduced frequencies less than 15. Grid spacing chosen
for the analysis resulted in large deviations between theory and experi-
mental data at the higher reduced frequencies. Of the variables consider-
ed, the steady flow field affected the time-variant pressure distribution

on the stator vane most greatly.
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NOMENCLATURE
b Airfoil semi-chord
c Airfoil chord
Cp Dynamic pressure coefficient (AP/ (pV3v/V))
L Length
R Radius
Re Compressor pressure ratio
A Absolute velocity
w/e/8 Corrected mass flow
S Vane spacing
T Blade pass period
X Distance from rotor trailing edge
K Reduced frequency (K = wb/V)
u Longitudinal perturbation velocity
v Transverse perturbation velocity
g Inlet angle
¢ Phase lag
P Inlet air density
w Blade passing angular frequency
Ap Suction to pressure surface pressure differential

on a vane

Subscripts

First harmonic

Second harmonic

ABS Absolute
R Rotor
Ax Axial
REL Relative
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INTRODUCTION

Aerodynamically induced vibration of fan, compressor and turbine airfoils
is a commonly encountered problem in the development of gas turbine engines.
Vibrations occur when a periodic aerodynamic forcing function has a frequen-
cy equal to the natural frequency of a blade. These frequency correspondences
are typically plotted on a frequency/speed diagram which relates the natural
frequencies of a particular blade and its forcing function frequencies at

varying rotor speeds.

Current technology is sufficient to predict with a fair degree of accuracy
the natural frequencies of bladed disk systems. The knowledge of the source
of various aerodynamic stimuli acting on the airfoils is also well substan-
tiated by experience. However, these tools are used only to locate, in terms
of rotor speed, the resonant points on a frequency/speed diagram. Design
rules are used typically to determine if a particular intersection will be
detrimental to engine operation. At present, the actual values of the reso-
nant stresses are unknown until the first testing of the assembled rig or
engine. If stresses in excess of a predetermined allowable value are mea-
sured, then life requirements dictate that such stresses must be reducnd.
This reduction can be effected by altering frequencies, changing the magni-
tude of the forcing function, increasing allowables for the airfoil, and
other demonstrated techniques. Systematic as this procedure may seem, it
still requires that test iteration be performed until design goals are met.
Hence, a predictive methodology for determining the stress levels of a blade

in resonance with an aerodynamic forcing function is needed.

The predictive model would include a description of the pressure distribu-
tion created by the disturbance being swept past an assumed nonresponding
airfoil and of the pressure distribution created by the movement of the air-
foil in the aerodynamic field. The first of these effects has been labeled
the "gust" loading, the second termed the "aerodynamic damping.” An itera-
tive solution which relates the gust loading, the ensuing blade motion, and




the generated aerodynamic damping is necessary to properly predict the total

response of a particular airfoil.

The aerodynamic "gust'" problem has been analyzed by several investigators.
*
M (2) (3), and Goldstein and

Kemp and Sears , Horlock , Naumann and Yeh
considered isolated airfoils acted on by various input gust pro-

Atassi(a)
files to determine unsteady or time-variant loadings of the airfoils. These
investigators contributed to the overall understanding of the gust problem,
yet the results were not amenable for application to turbomachinery blading
rows. '
D. S. Hhitehead‘s)

a wake resulting from periodic obstructions far upstream and presented the

analyzed a cascade of flat-plate airfoils subjected to

induced gust loading as functions of cascade variables for incompressible

flow. Suith(b) extended this analysis to include the effects of compres-

€

sibility in the subsonic flow regime. Henderson and Daneshyar used thin
airfoil theory to derive an expression for the unsteady lift acting on a
two-dimensional cascade of thin, slightly cambered airfoils moving through
a sinusoidal disturbance in an incompressible velocity field. 1In a later

analysis, Henderson and Horlock(a)

analytically investigated a moving cas-

cade of airfoils experiencing a sinusoidal disturbance in inlet axial velo-

city. Two-dimensional, inviscid, and incompressible flow was assumed for

highly cambered, small-lift-coefficient blading. The purpose of these anal-

yses was to describe analytically the time-variant loading of an airfoil

attributable to wake;;gpe disturbance?.o)On-going analytical investigations
1

by Verdon and Caspar and Caruthers are designed to properly consider
realistic airfoil geometries in a loaded cascade operating in a two dimen-

sional compressible flow field.

Because of the limiting assumptions in these and other analyses, experimen-

tal data to validate results and indicate needed improvements in the analy-
(11)
’

(16)

tical models were needed. Such investigators as Commerford and Carta
Ontdiek(lz), Henderson and Franko(13), and Fleeter, Novick, and Riffel

#Numbers in parentheses correspond to references listed at end of this
report.




furnished sets of initial correlative data. Fleeter, Bennett, and Jay
(15, 16, 17, 18) have provided measurements of rotor wake-induced time-
variant surface pressures on a highly cambered stator vane. The pressures
were related to the strength of the incoming velocity defect typifying the
rotor wake., Variations of parameters including reduced frequency, solidity,
axial spacing, and interblade phase angle have provided an extensive data

bank for correlation of gust analyses in the subsonic flow regime.

The aerodynamic damping portion of the overall forced vibration problem has
been analytically investigated by several of these mentioned previously.

Because the aerodynamic damping analyses are necessary to predict flutter,

this area of research has been vigorously attacked. Whitehead(s), Smith(6),

(19)

and Fleeter are but a few of those who have presented analyses for the

subsonic flow regime., The common assumption in many of these analyses has

(20 presented an

been that of a zero-thickness flat plate. Atassi and Akai
analytical formulation for analyzing oscillating airfoils in cascade in uni-
form incompressible flows. The theory accounts for the geometry of the air-
foils. Experimentally, the efforts of Carta and St. Hilaire(ZI), Fleeter

and Riffel(zz)

wind tunnels have furnished basic experimental damping for correlatioms in

, and Riffel and Rothrock(23) in two-dimensionai, rectilinear

the low subsonic and supersonic flow regimes. The effect of loading on
aerodynamic damping was identified by Riffel and Rothrock for torsional

motion of thin, low camber airfoil operating in a supersonic cascade.

Jay, Rothrock, Riffel and Sinnet(za) have obtained benchmark experimental
data from large turning airfoils operating in a cascade. A five blade
cascade was oscillated in the torsional mode with prescribed interblade
phase angles at varying levels of cascade loading (expansion ratio). Two
high subsonic cases and two transonic cases were investigated in this
study. This chordwise complex time-variant pressure field was correlated
with existing thin, flat plate airfoll analysis.

(25)

Platzer presented a review of unsteady flows in turbomachinery which

included the efforts of investigators in the areas of both gust response




and aerodynamic damping. This survey was concluded with an emphasis on the
need for evaluation of the various analytical formulations by comparison
with experimental data, specifically in the area of highly loaded, transonic
cascades.

Blade failures due to a "lyre," "stripe,"

or chordwise bending mode have be-
come particularly troublesome in low aspect ratio blading. A schematic of
the first three chordwise bending modes of a low aspect ratio airfoil is pre-
sented in Figure 1. These modes are excited, in general, by adjacent blade
rows, thus have relatively high reduced frequencies. .These type modes have
been experienced in the reduced frequency range of 3 to 10. An examination
of these modes indicates that the time-variant 1ift and moment coefficients
are not sufficient to determine the energy input during forced response, a

chordwise description of the unsteady loading must be obtained.

The purpose of the experimental research program described in this report

is to provide basic unsteady aerodynamic data relevant to forced response
with particular emphasis on expanding the data base with respect to the re-
duced frequency, loading interblade phase angle and solidity. This was ac-
complished in the Detroit Diesel Allison (DDA) low speed compressor research
facility with variations in the above key parameters achieved by varying the
number of rotor blades and stator vanes. The results of various operating
conditions, i.e., compressor loading at a constant speed, on the measured
unsteady chordwise vane surface pressures are presented along with a corre-

lation of the data with an existing analysis.




DISCUSSION
EXPERIMENTAL FACILITY

The wakes from the upstream rotor blades are the source of the aerodynami-
cally induced fluctuating surface pressure distributions on the stator vanes,
i.e., the rotor wakes define the forcing function to the downstream stator
vanes. Hence, it is necessary to experimentally model the significant fea-
tures which define this forcing function. These include the wave form, the
velocity variation, and the reduced frequency (k = “Cjzvaxial)' The above
described features are simulated in the DDA large-scale, low speed, single
stage research compressor. A schematic of the overall facility is shown in

Figure 2 and a view of the assembled test rig in Figure 3.

This 48.01 inch inlet diameter research compressor features blading (42 rotor
blades and 40 stator vanes, NACA 65 Series) that is aerodynamically loaded to
levels that are typical of advanced multi-stage compressors and is also large
enough to provide for large quantities of instrumentation. Table 1 presents
the airfoil mean section properties as well as the compressor design point
conditions. As indicated, the airfoils are large with the rotor and stator
chords being equal to 4.589 and 5.089 inches (11.66 and 12.93 cm), respec-
tively. In this facility the flow, the rotor speed and the pressure ratio

can be varied independently.

The rotor blades were designed to have aerodynamic loading levels represent-
ative of aft stages of modern multi-stage compressors. At the design point,
approximately 27° of turning is accomplished near the blade hub, diminishing
to about 13° near the tip. The geometric characteristics of the rotor blade
include high camber with fairly large deviation angle near the hub region,
and a maximum thickness-to-chord ratio which varies from nearly 7% at the
hub to 4% at the tip. The rotor solidity varies from about 1.6 at the hub
to 1.3 at the tip. Figure 4 shows a view of the rotor.
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The 40 vane stator row, seen in Figure 5, results in a nearly uniform axial
exit flow direction. Again, the airfoil loss and aerodynamic loading levels
are typical of those of aft stages of modern multistage compressors. The
vane features a large camber angle variation in the hub region, a radially
constant maximum thickness-chord distribution, and design point incidence
that varies from about zero to minus one degree. Vane solidity varies from

1.68 at the hub to 1.35 at the tip.
INSTRUMENTATION

The research compressor steady-state instrumentation, indicated schematically
in Figure 6, permits the inlet and exit flow fields to be defined and the com-
pressor map determined. The inlet temperature is measured by means of four
thermocouples equally spaced circumferentially in the large stagnation chamber.
The rotor inlet velocity profile is determined from the pressure measurements
obtained from three, eleven-element total pressure rakes equally spaced circum-
ferentially, and the average of four hub and four tip static pressure taps.

The exit flow field downstream of the stator row is determined from six total
pressure rakes, uniformly spaced across an equivalent vane passage together
with hub and tip static pressure taps. The exit temperature is measured with
an eleven element rake located circumferentially at the center of the vane
passage. The overall éompressor aerodynamic performance is evaluated by
examining the stagnation tank and stator exit temperature and pressure measure-
ments, with the flow rate computed from the stagnation tank static pressure

and total temperature and pressure measurements.

The time-variant quantities of fundamental interest in the proposed experi-
mental investigations include the fluctuating aerodynamic forcing function --
the rotor wake, and the chordwise distributions of the complex time~variant

pressure distribution on the dovmstream stator vane.

The blade surface dynamic pressure measurements are obtained by flush mounted

Kulite thin-line design dynamic pressure transducers on a pair of the NACA
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Series 65 stator vanes. These vanes are located in the stator row such that

one flow passage is instrumented.

The time-variant wake measurements are obtained by means of a cross-wire
probe calibrated and linearized up to 200 feet per second and *25° angular
variation. The probe is located at mid-stator circumferential spacing with
axial location corresponding to mid rotor-stator axial spacing in a passage
adjacent to the pressure instrumented one, as schematically depicted in
Figure 7. The mean absolute exit flow angle from the rotor is determined
by rotating the probe until a zero voltage difference "is obtained between
the two hot-wire channels. This mean angle is then used as a reference for
calculating the instantaneous absolute and relative flow angles. The output
from each channel is corrected for tangential cooling effects and the indi-
vidual fluctuating velocity components parallel and normal to the mean flow

angle calculated from the corrected quantities.
DATA ACQUISITION AND ANALYSIS

In this investigation, both steady and time-variant data were acquired. The

steady state data define the points of compressor operation, in terms of

overall pressure ratio and corrected mass flow rate, at which the unsteady
velocity and surface pfessure measurements will be obtained. Both the

steady and time-variant data acquisition are controll~d by an on-line digital
computer. The rotor speed is manually controlled by varying the power to the
DC drive motor; a digital readout of the rotor speed is provided via a tacho-

meter generated signal.

Figure 8 presents a schematic of the steady state and time-variant instru-
mentation modules as related to the on-~line remote digital computer. Only
one mode of data acquisition operation can be performed at a time. The
steady state corrected data is output on the teletype at the rig site as
well as on a line printer. The time-variant data acquisition is controlled
through the CRT terminal. On-line monitoring of this time-variant data is

accomplished by means of a dual beam storage oscilloscope synchronized to
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the speed of the rotor by a rotor shaft mounted optical encoder. The unsteady
data are presented on the line printer, and stored in digital form on a mag-

netic disk and/or punched paper tape for off-line analysis.

The steady state data acquisition follows the standard compressor evaluation
procedure. At a selected corrected speed, the compressor is stabilized for
approximately 5 minutes. Following this period, the on-line computer is used
to initiate the acquisition of the temperatures and pressures necessary to
generate the corrected mass flow rate, overall pressure ratio, and corrected
speed. A scanning of the reduced data is then made to assure data uniformity

and to ascertain the operating point.

The time-variant data acquisition and analysis technique used is based on a
data averaging or signal enhancement concept. The key to such a technique

is the ability to sample data at a preset time. For this investigation the
signal of interest is being generated at the blade passing frequency. Hence,
the logical choice for a time or data initiation reference is the rotor shaft.
An optical encoder is mounted on the rotor shaft for this purpose. This en-
coder delivers a square wave voltage signal having a duration of 40 microsconds.
The computer analog-to-digital comverter is triggered from the positive volt-
age at the leading edge of the pulse, thereby initiating the acquisition of
the time unsteady data at the rate of up to 100,000 points per second. The
data will be sampled for N blade passages and over M rotor revolutions. These
rotor revolutions will not be consecutive because a finite time is required to
operate on the N blade passage data before the computer returns to the pulse

acceptance mode which initiated the gathering of the data.

At each steady operating point an averaged time-variant data set, consisting
of the two hot-wire and the 22 Kulite signals, is obtained. Each of these

signals is digitized, stored on a punched paper tape, and Fourier decomposed

into its harmonics. In this investigation only the first two harmonics of

the data are examined through the entirety of the data analysis process. The




reduced frequencies of these data are in the range of turbomachinery experi-

ence with forced response problems.

From the Fourier analyses performed on the data both the magnitude and phase
angles referenced to the data initiation pulse are obtained. To then relate
the wake generated velocity profiles with the surface dynamic pressures on

the instrumented vanes, the rotor exit velocity triangles are examined.

Figure 9 shows the change in the rotor relative exit velocity which occurs

as a result of the presence of the blade. A deficit in the velocity in this
relative frame creates a change in the absolute velocity vector as indicated.
This velocity change is measured via the crossed hot-wires. From this instan-
taneous absolute angle and velocity, the rotor exit relative angle and velocity

and the magnitude and phase of the perturbation quantities are determined.

As noted previously, the hot-wire probe is positioned at mid rotor-stator
axial spacing. To relate the time based events as measured by this hot wire
probe to the pressures on the vane surfaces, the following assumptions are
made: (1) the wakes are identical at the hot-wire and the stator leading edge
planes; (2) the wakes are fixed in the relative frame. Figure 10 presents a
schematic of the rotor wakes, the instrumented vanes, and the hot-wire probe.
The rotor blade spacing, the vane spacing, the length of the probe, and the
axlal spacing between the vane leading edge plane and the probe holder center-
line are known quantities. At a steady operating point the hot-wire data is
analyzed to yield the absolute flow angle and the rotor exit relative flow
angle. Using the two assumptions noted, the wake 1is located relative to the
hot-wires and the leading edges of the instrumented vane suction and pressure
surfaces. From this, the times at which the wake is present at various loca-
tions can be determined. The incremented times between occurrences at the
hot-wire and the vane leading edge plane are then related to phase differences

between the perturbation velocities and the vane surface pressures.
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To simplify the experiment-theory correlation process, the data is adjusted
in phase so that the transverse perturbation is at zero degrees at the vane

suction surface leading edge.

From the geometry indicated in Figure 10, the time at which this would occur

is calculated and transposed into a phase difference. This difference is then

used to adjust the pressure data from the suction surface. A similar operation
is performed on the pressure surface data so that the surfaces of the vanes are
time related; i.e., time relating the data resulted in data equivalent to that

for a single instrumented vane.

Following this procedure the pressure differences across a single vane at all

transducer locations are calculated. These data, along with the individual
surface pressure data, are normalized with respect to the quantity p° Vz' %;
where p is the density, V is the absolute velocity, and v is the transverse
perturbation velocity at the vane inlet. This unsteady pressure differential
data will be correlated with predictions obtained from an appropriate state-

of-the-art unsteady aerodynamic cascade analysis.
CALIBRATION PROCEDURES

Calibrations of the two primary data sensors, the crossed hot wire and the
Kulites, were performed before the time variant data was obtained so that

the transfer functions throughout the measurement system could be determined.
Included in these measurements were Kulite static sensitivities, amplitude and
phase shift of the Kulite signals due to amplifier and signal conditioner gains
and temperature and directional sensitivities of the crossed hot wire. The
following paragraphs briefly delineate the calibration procedure used on the

Kulite pressure transducers and the crossed hot wire system.

The Kulite pressure transducer static sensitivities were obtained using a
vacuum-jar calibration rig. A quartz manometer-controller was used to evac-
uate the jar containing the Kulite-instrumented blade to the desired pressure.

The d-c voltage of each Kulite was measured over a range c¢f pressures, resulting
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in plots of voltage versus pressure. The sensitivities in mV/psi were the
slopes of these linear plots. These sensitivities compared closely with

manufacturer-supplied data.

The crossed hot wire is calibrated in a standard DISA 55D44 hot wire cali-
brator system. The velocity range is chosen such that the anemometer output
during operation 1s on the highly sloped part of the voltage output curve as
shown in Figure 11. This procedure ensures a high sensitivity of velocity
change for a given anemometer voltage variation. Due to the fact that the
sensor wires are physically placed at a 45 degree angie to the plane normal

to the velocity vector of the rotor field, the anemometer output must be cor-
rected for tangential cooling effects. The complete analysis for obtaining
this correction is found in reference (26). The crossed wire signal is fur-
ther corrected for temperature deviation from the original calibration tem—
perature. This is accomplished on the DISA 55D44 calibration rig whereby the
temperature of the calibration air is controlled by inline heaters. As the
temperature of the fluid increases the output from the constant temperature
anemometer (CTA) decreases due to the inherent decrease in the heat transfer
from the wire to the fluid, i.e., the fluid temperature approaches the sensor
temperature. A typical output of a linearized anemometer voltage plotted as
fluid velocity is shown in Figure 12. The fall off in linearizer voltage out-
put as a function of increasing fluid temperature is programmed into the online
anal}sis code and is used in velocity correction. The crossed hot wire system
is also calibrated for directional sensitivity, i.e., the output or response
of each wire does not follow the same cosine cooling curve due to small differ-
ences in wire alignment, wire linearity and wire to probe support junctioms.

A typical directional sensitivity plot for one sensor on a crossed wire probe
is shown in Figure 13. This type of plot is utilized in the acquisition pro-
gram to make the necessary corrections to the measured velocity and angle

deviations of the rotor wake.
ANALYTICAL MODEL

Forced vibration of a cascade of airfoils comprising either a rotor stage or

stator occurs when the frequency of a forcing function corresponds to one of

- 11 -
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the natural frequencies of the assembly of airfoils. Most generally in turbo-
machinery applications, the concept of engine order excitation is used to de-
scribe the potential forced vibration areas on a plot of airfoil frequency
versus engine speed. In a plot of this type the integer orders corresponding
to excitation sources are superimposed on a plot of airfoil frequencies. To
establish the airfoil frequencies beam and finite element techniques are used
depending on the depth of analysis desired. For rotor airfoils the tempera-
ture, steady state loading and centrifugal field effects are considered in the
analyses at the rotor speeds where frequencies are desired. For a non-rotating
stage only temperature and steady state loadings need to be considered. For
the excitation sources, experience has shown that adjacent blade rows, either
upstream or downstream, are main sources of excitation. One, two, three and
four per revolution loading can be important to inlet rotor stage excitation
and generally these occur due to non-symmetry in the inlet velocity profile

to the compressor. Other sources of excitation are possible, but are not

discussed here.

To understand the engine order concept for turbomachinery, imagine a rotor
blade rotating in a flow downstream of four struts. As the blade traverses
the wake created by each strut, a perturbation in the aerodynamic loading
occurs. This occurs four times for each blade revolution. Thus, the fre-
quency generated relative to the blade is four times the rotational speed
expressed in revolutions per second. This example of calculating engine
order excitation lines demonstrates the construction of the frequency-speed

diagram shown in Figure 14.

At each intersection between known engine order excitations and airfoil
natural frequencies a forced response problem is possible. Whether this
response is a problem or not is dependent on the level of excitation gen-
erated by the source, the structural and aerodynamic damping due to the
motion of the airfoil, and the agreement between the chordwise and spanwise
distribution of the forcing function and the mode shape of the vibrating
airfoil. Unfortunately, a predictive capability which considers all these
elements has not been established at this point in time.

-12 -
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A separation of the forced response problem into various elements of tech-
nical discipline has been made by investigators to enable a building block
solution of the overall problem to be accomplished. Under the two main

areas of aerodynamics and structural dynamics lie particular elements such

as gust-induced loading, aerodynamic damping, steady state loading, structural
damping, and frequency and mode shape predictions. Each of these elements are
subdivided even farther so that particular techniques can be used for solutionms.

A schematic of this approach is shown in Figure 15.

The particular area of investigation for the effort reported herein is that

of wake-induced gust loading of a stator vane in a subsonic flow field. The
wakes generated by a rotor stage create a time-variant loading of the down-
stream stator vanes. As previously described in the INTRODUCTION section,
several investigators have presented analytical formulations to describe this
loading. The analytical results used in data correlation for this report were

obtained using analytical formulation following Smith(6).

In this formulation the cascade under consideration is assumed to be composed
of infinitely thin, flat airfoils operating in a two-dimensional compressible
flow aligned parallel with the airfoils. The cascade loading is of course
zero. The cascade is described analytically by the setting angle and the
solidity. Operating coﬁditions are described by the inlet Mach number, the
reduced frequency, and the interblade phase angle, which relates corresponding
events on neighboring airfoils. The results from the analysis are presented
as a complex pressure field along the airfoil chord. The complex pressures

are normalized by the velocity deficit and the inlet dynamic head.

In the solution scheme for the analytical model a choice of the number of grid
points must be made. As a check on the convergence of the analysis a data set
typical of that presented later in this report was analyzed. The reduced fre-
quency was varied systematically and varying number of grid points were chosen.
The results are presented in Figure 16 in terms of the real and imaginary parts

of the non-dimensional 1ift coefficient. Of interest to note is the variation

- 13 -
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in this 1ift coefficient as the number of grid points are increased. This
basically presents a warning to check convergence for each particular case.
For the experimental/analytical correlations presented in this report, the
analytical data was generated using 15 grid points, thus at extremely high

reduced frequencies convergence is not assured.

The "in-house" developed analytical model for wake-induced loading of a
loaded cascade of airfoils with arbitrarily shaped cross-sections became
available at the end of the work period of this effort. The cascade is
described by defining a suction surface and the pressure surface of the
adjacent airfoil, i.e., a flow passage. The unsteady flow field is treated
as a small nonpotential perturbation about a mean nonlinear potential flow
field. The unsteady velocity field is further split into potential and non-
potential parts. Linearized field equations are obtained for the perturba-
tion entropy, vorticity, rotational velocity, and perturbation potential
which are solved successively using a combination of analytical and numerical
methods. The pressure distributions on the airfoil surfaces are obtained
after solution of the field equations from the integrated linearized momentum

equation.

Two test cases using the experimental data generated in previous AFOSR studies
were analyzed. The geometry analyzed is shown in Figure 17. A comparison of
the experimental data, the flat-plate analysis, and the thick airfoil analysis
is shown in Figure 18. The second case analyzed used a reduced frequency of
twice that of the presented case. Problems in the analytical results were
noted and truncation errors due to grid size was suspected. No further
attempts of correlation were made. However, the relatively good agreement

in the lower reduced frequency case provides encouragement for the continu-
ation of this analytical development. Additionally, complementary studies
have indicated the credibility of the thick airfoil model in ?§§oelastic pre~

dictions at low reduced frequencies by comparisons with Smith and Verdon

9

and Caspar published results.
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TEST CONFIGURATIONS

The original design of the DDA low speed rotating rig featured 42 rotor blades
operating upstream of a stator row of 40 airfoils. 1In order to perturb the
variables of reduced frequency, solidity, and interblade phase angle, config-
urations having every other rotor airfoil and every other stator airfoil re-

moved were evaluated.

A total of three test configurations were used in this study. Configuration 1
used 42 rotor blades operating in front of 20 stator Qanes. In Configuration 2
every other rotor blade and every other stator vane was removed yielding a 21
blade rotor and a 20 vane stator row. In Configuration 3 the missing stator

vanes were replaced, thus a 21 blade rotor operated in front of 40 stators.

For the variations in the several variables resulting from these configuration

changes, the comparison is presented in Table 2.

Since more than one variable was altered simultaneously, cross-plots of data
must be used. Additionally, the effect of variables concerned with the steady
loading of the cascade must be recognized for each configuration. This is con-
sistent with the previous conclusion from prior studies that the operating
incidence angle plays a major role in determining the unsteady loading of the

stator vanes.




RESULTS
STEADY STATE OPERATION

The primary goal of this experimental investigation was to obtain time-
variant surface pressures on downstream stator vanes due to the aerody-
namic excitation created by the wakes from the upstream rotor blades for
three specific compressor configurations. In order to establish a logical
sequence in the testing procedure a compressor map for each configuration
is required. Figures 19 through 21 present the stead§ state operating
points for each configuration as compared to the baseline configuration

(17). The par-

which was previously investigated under AFOSR sponsorship
ticular steady state operating points for each configuration were determined
by matching the stator incidence angle at a similar point on the baseline
operating curve. The data point identification shown in Figures 19 through
21 will be used in categorizing the various runs. The first digit will re-
fer to the particular build with O designating the baseline configurationm.
The second digit will refer to the particular point on the operating curve
with points 1 through 4 designating 100% corrected speed with the incidence
angle varying from highly negative at 1 to approximately zero at 4, while 5
through 8 will refer to the 70% corrected speed line with incidence varying
as before from highly negative at 5 to zero at point 8. This particular
identification is used in Table 3 which lists the relevant aerodynamic para-

meters for each configuration.
TIME-VARIANT DATA

A cursory examination of Table 3 quickly reveals that the specific effects
due to a single parameter change cannot be isolated due to the fact that at
least two key parameters change with each configuration. For example, the
baseline configuration has an interblade phase angle of -18 degrees and a
solidity of 1.516. Configuration 1 has a greatly reduced solidity of .758,
but the interblade phase angle has also been changed. Comparing the base-
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line to Configuration 2 reveals that the interblade phase angle is the same,
the solidity has been reduced, but the reduced frequency has also been re-
duced which precludes a strict separation of parameter effects on the unsteady

behavior of the cascade.

The data does provide several checks on the completeness of the parameter
group insofar as its importance to the analytical model is concerned. For
example, the first harmonic data of the baseline should compare to the second
harmonic data of Configuration 3. Also, the first harmonic data of Configura-
tion 1 should also compare with the second harmonic data of Configuration 2 at
a lower solidity and larger interblade phase angle. The following paragraphs
will discuss the comparisons made between the various configurations as well
as the correlation for the non-dimensional pressure coefficient and the pres-

sure phase lag with a current analytical model.

Figures 22 through 85 present the entire block of data obtained during the
course of this investigation. For completeness of reporting the baseline
data has been included and is presented in Figures 22 through 37. Since

(17), it will only be used during the discussion

this data has been discussed
on configuration comparison. The data set has been prepared in the standard
non-dimensional form with the pressure coefficient and the aerodynamic phase
lag being plotted along the vane chord. Also plotted are the predicted pres-
sures from the current analysis discussed previously. On occasion the phase
lag data will appear at the top of the graph at about 40 degrees, at other
times it appears at the 400 degree value. This is done to maintain all the
phase lags negative and on the chosen scale; therefore, when any phase lag
increases to a positive value, the entire data set is shifted 360° along

with the theory line.

At large values of reduced frequency, i.e., greater than approximately 15,

the flat plate cascade theory can fail to properly converge; as was noted
previously. The second harmonic baseline and the second harmonic Configura-
tion 1 theory line behaves badly and does not correlate well with the data,

this is felt to be a result of not using sufficient grid points in the analysis.




Figures 38 through 53 present the first and second harmonic data of Configura-
tion 1. The first harmonic data correlates well with the theory both in ampli-
tude and phase shift for the 100% speed line condition. The amplitude shows a
noticeable increase toward the trailing edge of the blade, as has been reported
previously on the baseline data. The effect of loading, i.e., incidence angle
change, 1s not as pronounced at this condition as it is in the other configura-
tions investigated. The amplitude of the pressure coefficient does exhibit a
tendency to remain at a high finite level across the entire length of the blade
for both the first and second harmonic as the incidenge angle is decreased from

a high negative value (point 1) to a low value (Point 4).

The 70% speed line data, Figures 46 through 53, exhibits a sharp change in
phase angle at approximately the 60% chord position for the first harmonic
data only. The second harmonic data experiences a rapid shift inm phase at

the 30% chord position and high negative incidence. The rapid change in phase
shift decreases for both the first and second harmonic data as the blade is
loaded and the incidence angle decreases. The magnitude of the pressure co-
efficient matches the theory quite well with the rapid decrease in amplitude

occurring over the first 252 of the vane chord.

Figures 54 through 69 present the first and second harmonic data for Configura-
tion 2. The overall correlation between theory and the experimental data is
not as good as it was for Configuration 1 particularly in the phase lag data.
The 100X speed line data experiences large differences at the leading edge
(Figure 54). This leading edge difference decreases as the incidence angle

is decreased (Figure 57), but at the same time the apparent presence of a
convected wave 18 seen beginning at the leading edge Kulite. The second
harmonic data of the 100 speedline fairs no better in that large phase shifts
occur early on the blade with the presence of a convected wave appearing as
the incidence angle is decreased to zero. The 70X speed line data (Figures

62 through 69) exhibits a different characteristic altogether in that the
first harmonic phase data appears to line up in a pattern characteristic of

a convected wave traveling down the blade at high incidence and completely
disappears at zero incidence. This behavior is repeated in the second har-

monic data (Figures 66 through 69).




Figures 70 through 85 present the first and second harmonic data for Con-
figuration 3. The effect of incidence angle on the behavior of the pressure
coefficient is very evident on this configuration. The first harmonic pres-
sure data for this configuration yields an almost constant value across the
blade at high negative incidence (Figure 70). The phase lag is also seen to
decrease rapidly down the first half of the blade in the chordwise direction.
This trend in pressure coefficient and phase lag changes noticeably as the
incidence angle i1s decreased as shown in Figure 73. Here the pressure co-
efficient and the phase both match very well with the theory line. The
second harmonic phase data indicates a noticeable correlation between the
theory line and phase angle as evidenced by Figure 74 and 77. As the inci-
dence angle {s decreased, the amplitude and phase lag data correlates very

well with the predicted value.

The 70% speed line data, Figures 78 through 85, indicate the same behavior
as the 100% speed line data with the data/theory correlation being poor at
high negative incidence and improving as the incidence angle is decreased
to approximately zero. The amplitude of the pressure coefficient is seen
to remain above the theory line for the first harmonic data while the
second harmonic data matches quite well at low incidence values. The phase
lag data follows a similar trend with the difference being a sharp tailing
off in phase lag toward the trailing edge of the vane.

The analytical model used in the data comparisons utilizes three main vari-
ables as key parameters in the forced vibration analysis. They are the re-
duced frequency, the interblade phase angle and the solidity. This group
of parameters contributes the majority control over the unsteady pressure
distribution and phase lag in the analytical model. The purpose of this
investigation was not only to provide a data base of extended range in all
of these variables, but also to provide data that would seek to quantify
the effects of solidity, reduced frequency and interblade phase angle on
the unsteady pressure amplitude and phase of a vane row experiencing forced

vibration.
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Figures 86 through 89 present a comparison between the first harmonic data of
the baseline configuration and the second harmonic data of configuration three,
all at 100% corrected speed. These points were chosen due to the fact that

the key parameters for both builds are the same. Examination of these plots
reveals a very close similarity in both amplitude and phase, particularly at
the high and moderate incidence levels where it is felt the pressure field on
the blade surface is being dominated by a convected wave phenomena. At zero
incidence the phase lags compare remarkably well, indicating that for two dis-
similar builds where the rotor flow characteristics are not the same, i.e.,
build 3 has only 21 rotor blades, the key parameters involved suffice to suf-
ficiently quantify the amplitude and phase lags on the vane surface. What
appears to be an almost constant differential of about 40 degrees between the
two data sets could very well be the result of a cross wire probe placement
error either in Configuration 1 or 3 or both. It has been shown previously(l7)
that a small error in probe placement could very well lead to this type of
error in phase lag. This comparison is of particular importance in that it
underscores the need for the analytical model to account for off-incidence
flow conditions and a more accurate method of determining a zero phase refer-
ence point for purposes of data acquisition. The problem of cross wire place-
ment could possible be improved by a vane leading edge reference point such as
a hot film signal. Such a zero reference point could be explored in future

investigations.

In order to quantify the effect of a single parameter on the pressure and
phase distribution of a vane surface, that particular parameter would have
to be varied while holding all others constant. For a given rig of fixed
geometry this proves to be unobtainable. The best one could do is vary a
given parameter such as solidity and then allow the other connected para-
meters to vary in a controlled manner. Figures 90 through 93 compare the
effect of solidity reduction at the same interblade phase angle and approxi-
mately the same reduced frequency. Thte model indicates that little differ-
ence is to be seen in the phase and pressure distribution. The data would

tend to confirm this as indicated in Figure 93 where at zero incidence the

- 20 -

— g — T T X A

‘4--l---lIIllllIlll;II-lIllllIIlllllllllllllllll.lll..



amplitudes are quite similar and the phase agreeing in a trendwise manner
with the same sharp phase shift experienced at the 507 chord position.
Again the effect of incidence effects are noted, particularly at the high

incidence value on the baseline data.

Figures 94 through 97 present the comparison between the baseline first
harmonic data and configuration one first harmonic data. This comparison
involves a change of two parameters, the interblade phase angle and the vane
solidity. The data indicates clearly that little difference exists between
the two configurations insofar as the normalized preésure coefficient and
phase lag are concerned. This conclusion agrees well with theory where only

a small difference in both the pressure coefficient and the phase lag exists.

Since more than one variable was altered in each configuration, a presenta-
tion whereby the major variables would become apparent was desired. The
effect of incidence angle which has been discussed in previous investigations
(15, 16, 17, 18) is such a dominant factor in the time-variant loading of the
vanes that the near zero incidence data alone was examined. Figures 98 through
103 present the near zero incidence angle experimental and analytical data as
functions of solidity, interblade phase angle and reduced frequency. For this
data presentation the time variant pressures in the near leading edge region
(3% and 10% chord) have been used since they are the most dominant pressures

on the airfoil.

In Figures 98 and 99 all data, irrespective of interblade phasing and reduced
frequency, was plotted against solidity of the vane row. A banding of the
data was performed as indicated on the figure. No clear trend exists with
vane solidity at either the 3% or 107 chord position. Seemingly other vari-
ables create larger deviations in the measured pressures than does the effect
of solidity.

In Figures 100 and 101, the trend of the leading edge time~variant pressures

with interblade phase angle is presented. Again, all near zero incidence data,
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irrespective of solidity and reduced frequency, was plotted as a function
of interblade phase angle alone. The theory grouping and the experimental
data grouping both indicate the same trend — the unsteady pressures in

the leading edge region are affected little by interblade phase angle over
the low incidence range (-18 to -72°) investigate but are affected when

the interblade phase angle is near 180°. The maximum gust induced pressures

occur with the 171° interblade phase angle.

Figures 102 and 103 present the trend of the analytical and experimental
data with reduced frequency. The theoretical and experimental data group-
ings both indicate that the leading edge region time-variant pressures are

reduced at increased reduced frequencies.

The discussion presented in this section reflect analysis of both the flat
plate mode analytical results and experimental results from the test pro-
gram. The effects of solidity, interblade phase angle and reduced frequency
on the time-variant pressure distribution existing on a stator vane surface
due to gust induced loading have been presented. As a further aid to those
investigators needing more detailed pressure measurements — namely, time-
variant data from both surfaces of the airfoil, Appendix A is presented. 1In
this Appendix, tabulations of the measurements made from each individual

Kulite for each data point are presented.
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CONCLUSIONS AND RECOMMENDATIONS

From the investigation performed under the auspices of this contract the

following major conclusions are presented:

1.

The largest time-variant pressures on an airfoil subjected to gust

induced loading are found in the leading edge region.

The time-variant pressures in the leading edge region of the airfoil

were found to be:

a. Little affected by solidity over the range of solidities

investigated,

b. Influenced by interblade phase angle with the maximum
change with respect to interblade phase angle occurring

at a near 180° phase angle,

c¢. Reduced in level as the reduced frequency of the gust was

increased.

The trends noted in the leading edge region for the measured time-variant

pressures are in agreement with flat plate airfoil predictions.

The level of measured time-variant pressures over the airfoil surface are,

in general, larger than the predicted levels from the flat plate model.

The variation of chordwise phase lag and time-variant pressures over the
surface of the airfoil is affected most dramatically by variations in the

incidence angle at which the airfoil operates.

Comparisons of first and second harmonic data obtained from varied con-
figurations which yielded equal values of solidity and interblade phase
angle and near identical values of reduced frequency for the same air-
foil shape have validated the parametric grouping to obtain aeroelastic
similarity, provided incidence angle is held constant during the compari-
sons. Additionally, these comparisons provide a check of data reduction

techniques and data repeatability over a number of years.
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7. At low incidence angles, the flat plate analysis used for correlation
provides a good qualitative insight into the gust induced loading of

the stator vane.

From the investigation reported herein there are secondary conclusions
which, although not related to the primary objective of the investigation,

are important to note. These are as follows:

1. The choice of the number of grid points used for the analytical re-
sults had a major effect both for the flat plate and the thick airfoil

model results.

2. The breakdown in chordwise phase lag at high negative incidence angle
is possibly due to separation occurring on the airfoil surface, thus
existing analyses are not capable of adequate predictions unless mod-

ifications are made.

Based on these conclusions, the following recommendations are presented.

1. Following the development of analytical models such as described in
References 9 and 10, the ability to properly assess the effects of

separation on the gust-induced loading should be made.

2. A detailed study to quantify the three-~dimensional interactions
through the entire vane passage should be undertaken to both address
the validity of the strip assumption and to assess wake decay

characteristics through the passage.

3. An experimental study similar to this investigation should be per-
formed at inlet Mach numbers in the high subsonic range to properly
assess compressibility effects for validation of the various analytical

models.

4, A technique to better relate the time-variant pressures with the gust
in terms of phase lag should be established. A suggested method would
be to place a heated film gage at the airfoil leading edge.




These conclusions and recommendations are presented as a result of the
analysis of the experimental and analytical results obtained in this
investigation. The data used in these analyses are presented, so that

other investigators can formulate their separate conclusions.
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Type of Airfoil

Number

Chord, C-in. (Cm.)
Solidity, o = C/S

Camber, ¢ - Deg.

Aspect Ratio, AR = §/C
Leading Edge Radius/C
Trailing Edge Radius/C
Inlet Air Angle, Bj - Deg.
Exit Air Angle, By - Deg.
Loss Coefficient
Diffusion Factor
Rotor-Stator Axial Spacing-in. (Cm.)
Flow Rate

Tip Speed

Rotational Speed

Stage Pressure Ratio
Inlet Tip Diameter
Hub/Tip Radius Ratio

Stage Efficiency, Percent

65 Series
42
4.589(11.66)
1.435
20.42
1.046
0.0044
0.0028
59.38
42.41
0.043
0.449

1.485(3.772)

65 Series
40
5.089(12.93)
1.516
48.57
0.943
0.0049
0.0030
37.84
0.00
0.056

0.410

31.02 lb/sec. (14.07 Kg/Sec)

183.5 ft/sec. (5593.1 Cm/Sec)

876.3 rpm

1.0125

48.01 in. (121.95 Cm)

0.80

88.1

Table 1. Airfoil mean section characteristics and compressor design

point conditions.
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Figure 4. View of single stage research compressor rotor.
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Figure 5. View of single stage research compressor stator row.
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VELOCITIES WITH NOMINAL FLOW

—— - —— VELOCITIES IN WAKE REGION

Figure 9.

—————— e —

ENGINE

\/ AXI1S

329458

Reduction in relative velocity created by blade wake creates
corresponding velocity and angular change in absolute frame.
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Figure 12. Typical linearized anemometer output of fluid velocity
shown as a function of fluid temperature.
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PERCENT ERROR

Figure 13.

DEGREES

Typical directional sensitivity of a crossed hot wire probe.
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IDLE
SPEED

(:) POSSIBLE FORCED VIBRATION PROBLEM

MAXIMUM
SPEED

FREQUENCY - HERTZ

- em———

12 EO (INLET GUIDE VANES)

MODE 5

MODE 4

MODE 3

MODE 2
4 EO (DUCT DISTORTION)
3 EO (DUCT DISTORTION)

MODE 1
2 EO (DUCT DISTORTION)

ROTOR SPEED - RPM

Figure 14. Typical frequency-speed chart for inlet compressor stage.
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FORCED VIBRATION

PREDICTION
AERODYNAMICS STRUCTURAL DYNAMICS
GUST AERODYNAMIC STEADY STRUCTURAL szggg“cy
LOADING DAMPING STATE DAMPING MODE SHAPES
o WAKE- INDUCED .
INTERFACE
o SUBSONIC/ o SUBSONIC/ o LOADING ° o BLADE ALONE
Po:g§§§i2XIc SUPERSONIC o SEPARATION o COULOMB o BLADED DISKS
o
“  EFFECTS ° ‘R:;;¥3§Y o SUBSONIC/ o HYSTERETIC o CLAPPERED
o THERMAL BENDING AND SUPERSONIC o MATERIAL STAGES
DISTORTION ° 3 o CONDITIONS o ASSEMBLIES
VISCO~ELASTIC
o STALL~INDUCED TORSTON °
o INTERACTION

Figure 15. Elements of forced vibration problem.
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Figure 16. Variation in 1lift coefficient with number of grid points
at varying reduced frequency.
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3.0 - [‘ A — EXPERIMENTAL DATA
[0 — FLAT PLATE THEORY

2.0 4 (O — THICK AIRFOIL THEORY

PRESSURE COEFFICIENT

0.0

100.

200.

300.

PHASE LAG - DEGREES

400. —

results.

' Figure 18. Comparisons of flat plate, thick airfoil and experimental
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Figure 22.
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Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 01l.
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Figure 23. Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 02.
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Figure 24. Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 03.
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Figure 25.
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Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 04.
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Figure 26. Chordwise data for second harmonic pressure difference and
phase lag and prediction from reference 6 for point 01.
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Figure 27. Chordwise data for second harmonid pressure difference and
phase lag and prediction from reference 6 for point 02.
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Figure 28.
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Figure 29. Chordwige data for second harmonic pressure difference and
phase lag and prediction from reference 6 for point 04,
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Chordwise data for first harmonic pressure difference and

phase lag and prediction from reference 6 for point 05.
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Figure 31. Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 06.
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Figure 32. Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 07,
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Figure 33.
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Figure 34. Chordwise data for second harmonic pressure difference and

phase lag and prediction from reference 6 for point 05.
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Chordwise data for second harmonic pressure difference and
phase lag and prediction from reference 6 for point 06.
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Figure 36. Chordwise data for second harmonic pressure difference and
phase lag and prediction from reference 6 “or point 07.
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Figure 37,
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Chordwise data for second harmonic pressure difference and
phase lag and prediction from reference 6 for point 08.
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Figure 38. Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 11.
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Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 12.
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Figure 40. Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 13,
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Figure 41.
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Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 1l4.
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Figure 42.
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Figure 43. Chordwise data for second harmonic pressure difference and
phase lag and prediction from reference 6 for point 12.

- 74 -

e g — e . - . - S e ——— e




DYNAMIC PRESSURE COEFFICIENT (Cp)

AERODYNAMIC PHASE LAG (DEGREES)

Figure 44.

°
°
® o ¢
; - TE
60 80
100 1 7
200 7
300 .

400

500 7

600

Chordwise cata for second harmonic pressure difference and
phase lag and prediction from reference 6 for point 13.
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Figure 45.
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Chordwise data for second harmonic pressure difference and

phase lag and prediction from reference 6 for point l4.
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Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 15.
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Figure 47. Chordwise data for first harmonic oressure difference and
phase lag and prediction from refevence 6 for point 16.
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Figure 48. Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 17.
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Figure 49. Chordwise data for first harmonic pn-ssurc_ditrm"oncv’an:.
phase lag and prediction from reference b tor paint 1H.
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Figure 50. Chordwise data for second harmonic pressure difference and
phase lag and prediction from reference 6 for point 15.
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Figure 53. Chordwise data for second harmonic pressure difference and
phase lag and prediction from reference 6 for point 18.
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Figure 54. Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 21.
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Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 22.
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Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 23.
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Figure 57. Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 24.
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Figure 58. Chordwise data for second harmonic pressure difference and
phase lag and prediction from reference 6 for point 21.
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Chordwise data for second harmonic pressure difference and
phase lag and prediction from reference 6 for point 22.
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Chordwise data for second harmonic pressure difference and
phase lag and prediction from reference 6 for point 23.
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Figure 61. Chordwise data for second harmonic pressure difference and
phase lag and prediction from reference 6 for point 24.
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Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 25.
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Figure 63, Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 26.
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Figure 64,
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Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 27.
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Figure 68. Chordwise data for second harmonic pressure difference and
phase lag and prediction from reference 6 for point 27.
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Chordwise data for second harmonic pressure difference and
phase lag and prediction from reference 6 for point 28.
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Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 31.
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Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 32,
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Figure 72.

AERODYNAMIC PHASE LAG (DEGREES)

DYNAMIC PRESSURE COEFFICIENT (Cp)

100

200

300

400

Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 33,
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Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 34.
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Chordwise data for second harmonic pressure difference and
phase lag and prediction from reference 6 for point 32.
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Figure 76. Chordwise data for second harmonic pressure difference and
phase lag and prediction from reference 6 for point 33.
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Figure 77. Chordwise data for second harmonic pressure difference and
phase lag and prediction from reference 6 for point 34.
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Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 35.
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Chordwise data for first harmonic pressure difference and

phase lag and prediction from reference 6 for point 36.
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Figure 80. Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 37.
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Chordwise data for first harmonic pressure difference and
phase lag and prediction from reference 6 for point 38.
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Chordwise data for second harmonic pressure difference and
phase lag and prediction from reference 6 for point 36.
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Figure 84. Chordwise data for second harmonic pressure difference and
phase lag and prediction from reference 6 for point 37.
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Figure 88.
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Figure 89.
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Figure 90.
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Figure 91.
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Figure 92. Baseline, data point 3, first harmonic compared to configuration 2,
point 3, first harmonic.

- 123 -

- —— e P R . S




Figure 93.
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Figure 95.
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Figure 96.
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APPENDIX A

PRESSURE AND SUCTION SURFACE
TIME-VARIANT PRESSURE DATA




AFUIR=9 Litium | 18T mARsANTC 11/721/74

KUTOR SpEey = 6ga,

]
|
|
' SATAL LOCATIun SLETION SURFACE PRESSURE SURFACE
FIRCENT CF Crmley AMPL [Tudr Prase AMPL ITUNE Frast
I
CeFm «815 =222 « 368 =57
| 1940 «254 -241., «293 -21.
20,44 «065 =133, «316 -7
’ $d g 0249 =161, 272 -1€,
' 4d gk 19y =219, . 189 =S,
Sa.uu 101 =254, 0220 -352.,
} 6444 ERY -299, 212 -€,
Y « 130 -31. « 167 =1?,
| 844w 213 =137, « 171 =337,
94w «d19 -214, «258 ~352,
97 . e 324 =205, «332 =35€,

——




AFUSR®S sLiL'=)] PT=] 240 HAR -, 11722773

ROTOR 5pPERY = 439,

AXImle LuCaTIvn - SUCTION SURFAQE PRESSUKRE SURFACE
PURCENT OF Crgmu AMPLITURE PHASE AMPLITUDE PrASE
2,534 e 4496 . =281, «325 =G4,
1d,dn W77 =290, «218 =83,
24,3¢ . 218 -295, «123 -G8,
Jd.aa 144 -346, ‘ 2124 =128,
44,04 «243 -223, 787 ~-141,
54.4¢ «190 3, 294 =114,
6d,4¢ «1438 =12, «298 114,
78,06 137 -2a3, « 297 -11¢.
8d,d0 «0065 =355, « 486 =146,
Sd.44 119 “3nda, 062 -128,
97,20 P8y -4, ,083 ~10€,

A= 2




AFJSA~3 niglu=] FT=2 19T Paw, /22778

ROTOR 3PELD =3 88G,

AXLAL LOCATLOx SULTION SURFACE PRESSURE SUKFACE
MENCENT OF CAury AMPLITOUR PNAlE AMPLITUDE FraSe
2eva ET ~187. 777 -at,
144200 « 239 =221, .463 ~27,
24484 154 “1v8, .458 -30,
3490 o312 -135, 351 ~3Q.
AJapu 232 “105, e324 =21,
DA o125 -185, W312 24,
Baeiu 233 ~315, 346 -22,
?a.aa 211 =51, $271 -26€,
84400 . 335 -135, 267 -2z,
Gd.00 W433 -214, « 330 =12,
97,00 228 =275, 2438 ~1€,

A= 3




AFOSR=d sUlLJ)wy PT=2 2ND WaRNM, 11/21/73

sXTAL LOCATIUN

PerRCENT UF Criura

40,4V
54d.0¢
6440y
74404
84,049
94430

97 .90

ROTUR SPEED = 449,

SUCTION SURFACE

AMPLITUDE

087
«132
502
«122

a8

PHASE

PRESSURE SURFACE

AMPLITUOE

PHASE

«88,

-86.




AFUSH=3 wulLu=)l PT=3 15T Havti, 11/21/78

' RQTOR SPEEN = wbAY,
axIQL LUCATION SUCTION SURFACE PRESSURE SURFACE
FeXCENT OF CHURD AMPLITUDE  PHASE AMPLITUDE  PRASE
2,94 1.327 -139, 1,353 ~34,
10,94 . 339 -227, .991 =26,
24,08 «394 115, .864 ~323,
! 34,04 695 =129, 716 23,
44,404 538 -154, 750 -16,
54,04 .201 ~155, 0674 -23,
64,40 . .126 -78, o610 -21,
78,09 AP7 =87, .549 -17,
44,49 .441 =140, +485 -1€,
93,20 0322 -198, .501 -G,
9/ .26 .254 -191, 502 -7
i
i
: A= §

e — S




S—

AFdSR=3 duiLu=]l PT=3 230 HarM, 11/21/79

ROTOR SPEED = 589,

AXIAL LUCATION SUCTION SURFACE

PLRCENT OF CHJy AMPLITUDE  PHASE
2,94 1,675 =248,
10.3¢ (139 ataz,
20,20 .629 -92,
32,00 368 =309,
42,94 233 =264,
54,00 421 =280,
64,90 . .292 w282,
74,40 333 =273,
84,09 ,287 =276,
90,24 287 =285,
97,00 362 =289,
A 6

S e w e e e e - .

PRESSURE SURFACE

AMPLITUDE

.987
.576
.594
,540
,549
541
,496
499
394
324

0248

PHASE

-82,
-78,
8%,
-87,
-93,
=9%,
-94,
-93,
-S1,
91,

'710

A




AFUSR=3 oU[LO=] PTwd 1ST maRH, 11721775

ROTUR SPeed = 489,

AXIAL LCCATION SUCTION SURFACE PRESSURE SURFACE
FIRCENT GF CHGRD AMPLITUDE  PHASC AMPLITUDE  PraSE
2,94 2.371 -292, 1,099 -28,

12,29 1.011 -312, . 800 -17,
24,80 ' ' 254 -351, «178 =354,
34.0¢ 0653 -153, 542 -3,
4d,42 0179 -228, . 546 -z,
50449 +185 -29, »428 ~Z,
62,29 . 4262 -85, «393 =356,
78408 .149 =138, «375 -2,
82,99 . 433 -1082, 2303 -36¢,
92,29 «133 =159, o342 -35¢,
97,09 $232 -185, 262 ~34€,

; A 7

B I s T S TP,




AFUSR=3 puluy=l PT=4 240 HaR4, 11/21/79

ROTOR SPEE) = 489,

S~XIAL LUCAT N SUCTIUN SURFACE PRESSURE SUKFACE
PLRCENT UF (3R AMPLITUDE  PMASE AMPLITUDE  PraASE
2,94 1,655 -244, 749 7€,

14440 .999 -148, .567 “65,
Q.91 e242 -267, 293 -214,
33449 .084 -198, .522 71,
48449 WJad -294, 521 -74,
53,00 172 276, .492 =74,
62439 « 397 -28d. . 497 «66,
76,089 340 =272, «451 60,
8d,00 «383 =273, 359 .83,
94,02 300 =209, 289 -4E,

97 . d¢ 0415 «275, 277 -26,

A= 4§

. oy 7P mmn




AFGSR=3 nlum] PTe5 57T HARM,

RUTOR SPEEN = 6143,

AX[AL LOCATIuw SUCTION SuRFACE PRESSURE SURFACE
PeRCewT OF CruRy AMPLITUDE  PHASE AMPLITUDE  PRASE
2.94 .959 -221, .802 cdd,

14494 389 244, ' 0349 -8,
24,33 .242 -32, .124 7,
Jgeut e238 -175, 0224 ~1£&,
49,49 «232 =246, o147 .2z
$54.06 124 =224, «150 -35¢,
64,00 o112 =273, . 156 -d,
79,00 «207 -4, 076 -l
894920 «312 ~94, 86 -35Z.
948,04 «348 -183, 110 =326,
97,24 e109 -289, 151 =337,

I

— — - M g 4T n s emetet e e yen e s st el e




AFUSR=d plu=l PT=5 20 HAR:,

AxTaL LOCATION

PeRaedT UF CnQRY

2,94
14,00
28 .00
3 00
4d,4d¢
52,8u
63,40
74,92
84,0¢
82.79

87,04

RUTUR SPEED =2 bl1J3,

SUCTION SURFACE

AMPLITUOE PHASE

543 =256,
475 =244,
229 =319,
122 =3¢3,
189 -142,
o172 272,
129 =46,
il =247,
087 =59,
+09Y -292,
P E4T ) =46,

A=10

i -

PRESSURE SURFACE

AMPLITUNE

$278
108
NTY,
.231
045
036
.233
.037
$031
026

@18

PRASE

-69 Y

.420




AP US <=y Glluw]l RTen |37 HAR -,

RUTLUR SPeed 3 613,

|
|
' AXTAL LUCATIuw SUCTIUN SURFACE PRESSURE SUNFACE
PERCENT (F CngRy AMPLITuUDE FHASE AMPLITUDE Frasg
|
2,94 <445 -214, 876 -14,
' 19,22 .21 -232, 576 -1,
20,9 .2 =178, .396 -13.
l 33,94 «234 =121, «339 -8,
' 44,44 .184 -143, ' .328 .17,
53, 90 P97 171, «282 -14,
i 64,40 J106 =339, 279 15,
7d.9¢ 0305 =31, 0199 =32,
84,99 L, 355 -141, .209 -26,
9d4du <200 -247, .227 -dd,
97 . a4 $315 ERPE 324 -32.




AFUSN=3 i Le] FTeg 240 HaRel,

~xlai, LOCATTIunN

PerCENT OF CruRrD

2,94
P I B
24400
Jdeda
43,94
3da¢n
6d,2¢
74,89
84,44
9da¢v

97 .,.4¢

B e T VAU,

RUTAR SPeEeEh = 613,

SUCTInn

AMPLITUDE

sd2

«104

62

- g m -

SURFACE

PrasStE

=224,
-227-
-lbsc

-312.

A=i2

S —————— X e e =

PRESSURE SURFACE

AMPLITUDE

2363
o147
106
280
.09
.078
076
W75
+263
.052

<248

PHASE




AFUSR=3 Hiiiw] PT=7 ST HAF A,

*GTOk SPEeD = o613,

AXTAL LUCATINN SUCTIGN SURFACE PRESSURE SUWFACE
PLRCENT GF CHOwy AMPLITUDE  PHASE AMPLITUDE  PrASE
2.94 507 -188, \964 -16,
10,44 W261 -227. W745 -12.
20449 P00 -1uB, .501 =26,
3d a0 262 -133, v430 ~E,
4d,0¢ 162 =142, 4379 12,
544 370 -122, 316 -15,
68.vy C .R43 -22, «295 -17,
72,90 .326 -39, 0162 .22,
84,49 .25 -66, 0197 -22,
99,29 0251 =24, 284 -81,
97,0k 0393 -33, «105 92,
A=13




A Sxed < w) v Ta7 AR,

RITOR SrEeiv = ~ld,

TOLAL LUl D SULTIL Y SUnFACE PeESSUREL SURFaACE
lege T ur LR AR ITOl e PHaASEL AMPL[TUDE Prate
2o aded ~-Zod, « 343 =61
PRI R IRY ~10A, 174 -4,
2450 VR T, -Z213, o111 2%,
33eun .%o ~311.  .144 -7,
Qg it a 53 ~ioa, 131 =367,
d, 1 a9 -2727., «126 =7,
Bae ) NP Y -l , 107 «30f,.
Jie o 16 “Ju2, +AYE =35¢,
ddedd «03 -171. s D82 =28¢,
Yleud o110 -4, 264 =352,
37 40" AR =211, 0587 =38¢,

Am]d




ArUSNey .=l PT=n 137 MNAKs

RUTOw LPEER = 614,

AXTAL LOCATInN SUCTION SURFACE PRESSURE SURFACE
HewCENT UF Crizru AMPLITUDE PHASE AMPLITUDE PrASE
2494 1,000 -213. 884 21,

1ad,00 «09U1 ~29%, 548 =11,
2h.5 V34 =07, 112 =G
30401y 257 ~167, « 3989 «360,

44 ,un JHEI -?56, 328 -1,
SA.un o171 -3, 0262 -2€e.,

(-3 . 251 -36, e204 =J35€,
74h,0% .14k =42, «1461 =2 4¢,

Bd, at 205 -18, «144 =321,
99,0 o454 26, e @65 -25¢,

87 v « oS -28, P58 “27¢.

A=1Y




AFuUSR=3 pLU=1 PT=8 2NL pakr,

RQOIGK SFEED = 14,

AXIAL LOCATIOHN SUCTIUN SURFACE PRESSURE SUKFACE
PerCEAT GF CHORD " AMPLITILE  PrRASE AMPLITUDE  FRASE
2494 1.060 25U, e 262 =74,

143400 567 -1¢1, .123 -36,
20420 0 al -zhi, « 236 -d4,
3dadi L0674 -176, 073 -18,

a4 4av 120 -268, 277 =17,
54,00 W12 -146, 260 “7.
6d.30C _ 871 =297, 48 s,
74.¢0 NP -275, P44 7
8444w 30 =296, <236 -G,
92.4v 16 ~314, .31 ~2S.

97 4 9v 622 -794, 026 -27.,

A=16




AFUSNG  oLug 0ATA PUINT § FIRST PARM, ALP=2ZS5

RUTQF SPEED = 9113,

AXTAL LCCATION SUCTICN SURFACE PRESSURE SUKFACE
PLRCENT UF CrURD AMPLITLUE  PHASE AMPLITUDE  FrASE
2e34 1,628 -314, WA93 -18€,

14.080 8689 =334, « 339 -288%,
244,40 <659 ~28, w336 -28¢,
34,00 YY) -38, V336 “327.
44,04 WA452 20, \356 -3z,
52440 703 ~6. .A438 -3e1,
6d,u4v w748 ~7 530 =37,
78404 $733 -17. «590 =391,
84,0 « 42548 -344, 620 =332,
vd.iau 7863 -2, 673 =344,
9/,2¢ 819 =325, 851 ~347,

Am17




AFUSRY  BLu2 UATA PUINT 1 SECUNU naRM, ALPR=25

KOTLR SPEED = 903,
AxIAL LCCATION SUCTLION SUKFACE PRESSURE SURFACE
PCRLENT GF ChURD ARPLITULE PrRASE AMPLITUDE PrASE
2.54 14123 -270, T -80,
144du .207 P85, .318 «64,
20.0Y .246 -168, .287 -83,
32,0¢ .263 =219, ,136 -100,
44,00 . 260 -283, 0146 -67.
854,4¢ .132 -292, 140 «SE,
63,80 . W027 »86, 086 -11€,
7d.9u o140 =149, <789 =88,
82,48 . 331 -47, .286 =96,
93,2¢ ,374 -324, 141 =102,
9/.20 0245 -79, .216 116,

A-18
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AXTAL LOCAaTIuwm

PorRECENT OF CnURD

AP UJIRI=wR Uig

2494
1devu
244,430
s
44464
$34u
6d.4¢
7d4d¢
84440
9,04

8/ 46

JaTa POINT 2 FIRST

FOYUR SPEED =

SUCTIUN SUK

AMPLITURE

1.259
«584
o508
684
v 146
0312

FaRM,

0u2,

FACE

PHASE

A=19

ALPHLZ2)

PRESSURE SURFACE

AMPLITUDE

1,236
.459
24}
.299
392
.464
.442
W415
.344
«391

494

FrasSt

~24€,
101,
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71,

40,
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AXTAL LOCATION

FERCENT OF (Cmawb

2.94
14,80
24 4u¢
34,y
43,00
Vdald
Odeuy
723,30
84,90
93,.,9¢

97 .84

CATA PUINTZ

#OTUR SPEED

AMPLITUVE

SECUNY PARM,

Jul,

SUCTIUMN SURFACE

PHASE

=766,
=324,
-ib1,
=212,
=287,

«3d,.
=136,
=199,
=276,
=151,

=267,

Am2

ALPHA=27

AMFLITUDE

.521
. 266
.158
, 768
110
.50
,232
Yy
.09
$216

025

PRESSUPE SURFACE

FrRASE

71,
=8¢,
5%,
.47,
-58,
-3¢,
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RUTUR SPEED = w1,

AXIAL LOCATIGN SUCTIUN SURFACE PRESSURE SUKFACE
PERCENT QOF CHURY AMPLITUDE ~ PHASE AMPLITUDE  PraASE
2,94 2,424 =258, 782 -148,

14,49 687 -282, | .588 -103,
24,dd $ 415 -2, 477 -108,

3d, A4 «372 -38, 421 =126,
4d.49 242 =146, 372 =163,
54,00 »203 =225, , «337 =182,
63,39 0178 =267, o240 =248,
74,04 274 =314, 0195 -21E,
84,.,3¢ w584 =319, 371 =221,
92,04 2043 =41, «371 =221,

87 .30 0524 =238, e 452 . =232,

A=21
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ROTOR SPEED = yay,

e b

Py

-

e e,

AXIAL LGCATION SUCTION SURFACE PRESSURE SURFACE
FeCEnT GF Craku ANPLITUNE  PHASE AMPLITUDE  PrASE
2.94 2,923 =260, . 408 <74,
14,00 ,233 -49, .235 -7€,
20 00 , 341 -172, .120 -9z,
3d.00 .225 -226, 77 -850,
44, 4¢ L0735 -291, .95 =75,
54,40 Whal -67, , 516 -9z,
0d,0¢ . ,097 -172, .46 “81,
74,44 « 109 =217, 254 =84,
84,89 L6049 =216, 231 -87,
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A=22
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2,94
140U
2344
ddeye
LY e
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Bdedn
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97 v

AP T TL}f,)i

3.182
1.549
e415
«597
0348
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w282
329
o191l
0433

2857

ALPHAZSH

498,
FACE
PHASE AMPLITUDE
-229. 0742
=291, <9386

=50, »499
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=141, e 315
“224, 244
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=322, 148
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=237, 0415
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HE——

PRESSUPE SURFACE

PrASE
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PordCENT OF Crury

——_

2,94
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Sd.2u
64,2
74407
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YduY

9/-@"’“
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ROTUR SPrcy

SUCTIun

AMPLITUCE

2.104

«936

977
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SURFALF

HARM,  ALPHA33A

594,
PHASE AMPLITURE
=25u, «449
-1749, «222
=133, «125
=277, P77
=39, .81
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«343, .478
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A=24
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FrRASE
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97 426

SATA POINT 5 Pl

ROTOR 8PEE
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AMPLITUDE

749
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357
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459
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D = 634,

SUKFACE

PHASE

-333,
=313,
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=266,
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=298,
~317,
=240,
=279,

=294,

ALFRAZ2S

PRESSURE SURFACE

AMPLITUDE
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«sdu !
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361
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PHASE
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-277,
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T ndd,
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ARPLITUDE

1Bt
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97

D

PHASE

=348,
=327,
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~H2.
=108,
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=2¢h,
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AMPLITUDE
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ROTUR SPEED
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AMPLITUOE
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2543
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o760
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PrASE

-272-
=278,
'221-

'215-
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PRESSURE SURFACE

AMPLITUDE

e — aae
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<915
Yy
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FrRASE

-16Q-
-21¢%,
=220,
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2.94
13,04
2d v
Ja. 0
44,49
ISy
644
7deds
Adede
Yde
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POINTS  SROOND RaPa,

RITUR SPERD

SUCTIOw

aMPLTITRuE

959
195
252
<144
207
LNE

«283

ey

03d,

S5uUwrACE

PraSc

-32‘;1

ALPHA=27

PRESSURE

AMPLITUDE

.203

SURFACE
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axLAL LUCa) 1N

PLRCENT UF LHuRY

2,394
1d.9¢
24433
K I
4.0
Sa.4m0
0d,.dd
7dedu
8d.49
9d,3u

97,20

saTa MUiNT 7 FIR

RUTOW SrtEE

3UCTTanN

»\"‘T)LITUJE

1.170
0223
<330

672

ST narh, ALLPHA23?

N

-
=

0od3a,

SURFACE PRESSURE SURFACE

FlRASE AMPLITUDE Prasg
~3u14, 1,388 =126,
=186, « 961 =162,
~125, :926 =12,
~142, 978 -1¢S,
=159, 912 -11%,
~164, o757 -116.,
-159. «621 ~11€,
~146, »588 -{0Q€,
-147, «613 =11¢.
~ian, B3V 118,
=123, 672 =111,

An29




Ardasdeme g

walAag LuLalTlay

APrRCeiT OF vy
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1d.20
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Sseh2
d4d 04
34440
0d,4
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BAgu)
Jouedd

Y/ A

JaTa POLNT 7 SrC00

RUTUCR 3PEEDN 3

SUCTIigm Sux

AAPLITuuY

h9/
191
117
«0283
«19?
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«140
259

119

AR

eda,

FaCE

FIA3E

-2950

=335,

Aw 32

ALPrAz32

PRESSURE SURFACE

AMPLITUDE

«562
,345
«234
.61
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18
.13
e D59
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PrASE

"76.
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RUTUR SPEED = 537,

ALIAL LUCATION SUCTINN SURFACE P«ESSURE SUKFACE
SanCenT Ur LNy AARLITYIE PHASE AMPLITULE PrASE
2,34 | e 949 =243, 1.464 -8,

14,44 224 -394, «981¢ =86,
24,44 «275 =118, «945 -Gz,
34,33 . 344 ~134. »939 ~ga,
6,34 277 -146, 847 -162,
5d.44 242 -153, 725 =104,

6, 4% «173 =151, 6065 -124,
74,44 125 ~-126. .03 ~g98,
34404 163 =194, 607 ~1¢z,

9. .24 0216 -112, «509 -128,
37,34 274 ~121, .589 -126,
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R0TJR SPEED = 534,

<X pal LOCATL i SUCTIGN SuwWrACE PRESSURE SURFACE
AiRCeaT UF Lotamu AP ITL07 PrHASE AMPLITUDE FrASE
2.94 7533 =-291. P04 «-136,

1dau” «225 whd, « 3118 -8,
24,43 e 133 =211, .214 =27,
3deda 484 =332 .154 =74,
44,23 i a “28. 122 72,
S54.,0¢ . 350 =95, 107 /4,
Od44% W2y =132, «A91 -68,
78,42 a 239 =5y, P67 =52,
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94,45 o343 =15 241 -3,
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ax[ag

roRCENnT UF

dedd
14400
2de¢A
S eviu
g Ay
544000
6a,54
7iq04
Bdede
94,0

97 A0

PRI

LUCaTIN

e

13T Rarey 21/4an
~LTAR SPLEEN = 3835,
QUCTIOY SuURFACE
AP ITune PraSE
«941 =222,
sUB2 179,
e 020 ~240,
1e201 =257,
338 =319,
«Has =24,
s A8 -228,
1.191 =253,
.663 =32,
1,460 =243,
H4a5 =154,

AmSd

PRESSURE SUKFACE

AMPLITuUDE

1,401
1,316
1.116
1,208

777

PrRASE

=258,
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RITUS SPEEN = Ban,

AKLAL LOCATy dn 5uCTIUN SURFACE PRESSURE SURFACE
SemCenT OF (ndinu AMPLITOOE PHASE AMPLITUNE FPraSe
Y l.150 -244, 1,236 =112,
10,04 317 249, 194 =51,
26414 o314 ~189, .223 €2,
39 ¢ .336 ~217, W 166 7%,
‘ da,04 0369 ~348, 216 -3¢6,
54,2 1d7 -6, 227 286,
6342y . 149 -134a, .239 =81,
73,40 .224 ~1y3, T ,n28 112,
844d¢ RE -147, 240 =152,
944d.i 0299 ~349, .087 -5¢,
9/ a8 hY7 =150, ,222 -122,
Aedd
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ax LAl LuCATION SUCTIUN SURFACE PRESSURE SURFACE
ZLICENT UF Cauw AMPLITUNE  PHASE AMPLITUDE  Prage
2.34 1,166 =272, 1,880 -126,

14440 1,404 -203, .902 -12%,
24499 W3v4 58, 571 -137.,
3éuitd o879 -56, 0466 .126,
4d,1¢ 1.149 ~74, 514 =12¢%,
Sa¢,22 0475 =81, + 963 =126,
5d,4v .46 15, 555 =146,
78,40 0n1 - 3714 -15¢,
84,40 75 ~23, . 383 “161,
90,00 679 =24, .197 173,

97 .29 404 -14, 0222 -3az,
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AF IS =y FT=2 2%y HARM 21740

~3TOR SPEEDR =  =db,
«Alul LGCATIIN SUCTION SURFACE PRESSURE SURFACE
“aneNT OF Lemuwy AMALITUNDE P} ASt AMPLITUDE Prast
2evd 940 =247, «723 =68,
14,0¢ 473 -dd, «321 -4,
23,40 .319 -153, 271 =55,
ddeg s 118 =36, 167 =87,
LI I o119 =11 D86 =45,
dd.32 «135 =43, 109 51,
64,04 0122 =121, «255 -8€.,
74404 «112 =194, « 243 =3€,
8443 «1¢6 -2v4, «B32 =3¢,
99404 <163 -3u6, «235 =26,
97 .08 W26 “2ul, «252 =241,

A=36
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ROTOR SPEED = adb,

axlaL LOCATINw SUCTIUN SuxFACE PRESSUKE SURFACE
rexCesT CF Lrmiusy AMPLITuUNE PrASE AMPLITUCE Prase
2.94 1.351 =201, 1.687 -84,

14404 P28 83, «843 ~88,
2dgviv «J0d =64, «837 -82,
ddguv o721 =79. «613 -84,
44411 254 -145, «651 -5e,
5deuu 235 b2, 60 -18€,
G, «d302 24, «439 =120,
72,140 «336 -14, e 277 =124,
86,0 . 289 20, 197 =110,
9deviv! «869 =36, 0148 81,
§/7,42 356 -1d2, e129 -56,
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2.94
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qJ 413
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64,42
7d.0m
B4,40
94404

97 oA

2
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21742

QTR SPErD = 8RS,

SUCTION SURFACE

AMPLITUNE PrASE
«7u? =249,
. -173.
253 =150a,
A7Y “-“158,
148 =501,
109 60,
o109 ~1106,
«234 =219,
Y -39,
«153 -lead,
e 194 =230,

Ae dh

PRESSUNE SUNFACE

AMPLITLIE FmaSE
.892 =62,
« 346 -q€,
0272 =t7,

..142 =75,
132 =351,
J1a1 ~67,
«274 -€%,
273 =44,
879 -42,
261 =32,
.78 .34z,
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14444
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ddaae
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73400
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3d.38

97.¢¢

o -
IPELY SUCTIgw

LML AP IT Sue

1.%28
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2276
374

«428

SURFACE

reaSE

=255,
-237,
82,

-84,

PRESSUPE SUKFACE

AMPLITUDE

1,461
921

«f13

FrasSt

'71-

’720

-07.

~10,
-1e¢t.

-5€,
=112,

-15¢%,




Ar 3=y STel  w U mpet glgan
~u T3 SPeED 2 ned,
safag wllmr, SUCTI. « Su~raCE PRESSUREL SUAFACE
o el T SR o, AVPLIT e PraASE AMrl[TulE Frasc
Cord o7 dn =229, «San -5%,
L2420 el 2 -7 « 333 =3C.
2h440 222 -in7. 0223 -7€,
2470 o-iti? -178, « 139 -7%,
4,00 el -173. o161 «77,
Dietlu e l4 -0, 127 =tS,
Cdaun o'59 =126, a7 =86,
TN ot -3, 87 72,
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2.96
1d.40
2642¢
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44,44
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74,94
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94,34
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AP ITun e

2.148

1.413

Y

SurFaALE
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-292.
=315,

27,
=32¢.
=244,
=389,
=324,

16,
=2u4,
264,

=42,

Amal

PRESSURE SUKFACE

AMPLITLGE

1,315
1.027
864
554
«352
174
«198
0357
«288
0216
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Frase

'142-
=186,
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-16€,
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RUTUR Skeeh s o2,

sxIaL LOCATIgN SUCTINY SukFaLE PRESSLNE SUAFACE
SnAlenT 3F LRy, avPLITyue PralE AMFLITURE PrASE
2e94 1.25¢ =235, 1.756 -£7.

ldadg e 763 =242, «543 “17.
22440 351 -1ay, .568 -2€,
3éedv A4l =199, 392 dd,
42444 . 188 =357, 0294 =7C,
9d.4¢ L 344 =59, «256 -5¢€,
64a4uw e474 30, « 339 =€1,
/dene , «J08 -lu2, « 301 ~G4,
bieldis 112 =172, 290 -G4,
94,4 738 =25, 424 =11,
97,88 748 -178, .581 -l1e,

Amdy
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FrasSt
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2Len T LF CRrLED AMPLITULE PrASE AMPLITUNE FrASE
2,34 e 343 =124, 1.228 =22,
1d.4¢ 1.175 =223. «7943 “lie
diela 412 121l « 733 -{2,
ddedd 1.272 =124, 424 -37,
A4 ¢ «136 =173, «225 ~3€,
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AXIAL LOCATIUN

PERCENT QF ¢nORD

1ST HMARM 21/42

ROTOR SPEED =

624,

SUCTION SURFACE

AMPLITUDE

2,945

787

«443

874

1.129

1.024

2767

394

- . <619
0474

0242

PHASE

226,

‘2170

=199,
-189,
=202,
-228,
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=243,
-244,
83,
=32,

A=45

PRESSURE SURFACE
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1,065
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«394
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PHASE
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~178,
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111,
as,

-bﬂ.

A=q?

PRESSURE SURFACE

AMPLITUDE

1,757
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341
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0193
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132

PrasSt

=331,
=328,
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moeriment s’ tnveMigation was conducted to provide basic unsteauy pressure
tibutions ..\, 4 atétionary vane row, with the primary source of excitati ..
+f the wakes gerersed from an upstream rotor. This was .ccomplished over
J.ice range of key paMmeters in a large-scale, low-speed, single st.ge

ressor. Tne gacsicsion, the velocity defect crcated by che rotoc blade g
1, vas measufed witha crossed hot wire. The resulting time-variant .3
Mynamic response waS\messured by means of flush mounted high response

.

one
o W13 \ UNCLASSLPLEN
v ) B BECURITY CLASSIMICATION OF YIS PAGK (When Dere Entored)

.
A "

- 4.8 =



